
www.stetjournals.com
 Scientific Transactions in Environment and Technovation

P - ISSN 0973 - 9157
E - ISSN 2393 - 9249

April to June 2018

J. Sci. Trans. Environ. Technov. 11(4), 2018196

Scientific Transactions in
Environment and
Technovation

Association rules based secured dataset using Dynamic Pivot Tuple (DPT)
Technique
V.Geetha* and R.Ramya
Department of Computer Science, STET Women’s college, Sundarakottai,Mannargudi, 614016,Tamilnadu, India.

Abstract
The main ingredients in our protocol are two novel secure multi-party algorithms. One that computes the union of
private subsets that each of the interacting players hold, and another that tests the inclusion of an element held by
one player in a subset held by another (Han et al.,2001). Existing SQL aggregations have limitations to prepare data sets
because they return one column per aggregated group. In general, a significant manual effort is required to build data
sets, where a horizontal layout is used. We propose simple, yet powerful, methods to generate SQL code to return
aggregated columns in a horizontal tabular layout and returning a set of numbers instead of one number per row. This
new class of functions is called (DPT) Dynamic Pivot Tuple. Horizontal aggregations build data sets with a horizontal
demoralized layout (e.g., point-dimension, observation variable, instance-feature), which is the standard layout required
by most of the data mining algorithms. We proposed three fundamental methods to evaluate horizontal aggregations:
1.CASE: Exploiting the programming CASE construct; 2.SPJ: Based on standard relational algebra operators (SPJ
queries) and 3.PIVOT: Using the PIVOT operator, which is offered by some DBMSs. Experiments with large tables were
compared with the proposed query evaluation methods. Our CASE method has similar speed to the PIVOT operator
and it is much faster than the SPJ method. In general, the CASE and PIVOT methods exhibit linear scalability, whereas
the SPJ method does not.

Key words: SQL data, aggregation SPJ, Pivot, Case

Received : Junel 2017 Revised and Accepted : May 2018

J. Sci. Trans. Environ. Technov. 2018, 11(4) : 196-204

 *Corresponding Author :
 email: kkmannig@gmail.com

196

INTRODUCTION

Horizontal aggregation is a new class of function to
return aggregated columns in a horizontal layout. Most
algorithms require data sets with horizontal layout as
input with several records and one variable or
dimensions per columns. Managing large data sets
without DBMS support can be a difficult task. Trying
different subsets of data points and dimensions is more
flexible, faster and easier to do inside a relational
database with SQL queries than outside with the
alternative tool. Horizontal aggregation can be
Performed by using operator, which can easily be
implemented inside a query processor, much like a
select, project and join. PIVOT operator on tabular data
that exchanges rows, enable data transformations
useful in data modeling, data analysis and data
presentation. There are many existing functions and
operators for aggregation in (SQL) Structured Query
Language. The most commonly used aggregation is
the sum of a column and other aggregation operators
return the average, maximum, minimum or row count
over groups of rows. All operations for aggregation

have many limitations to build largedata sets for data
mining purposes. Database schemas are also highly
normalized for On-Line Transaction Processing
(OLTP)systems where data sets are stored in a
relational database or data warehouse. But data
mining, statistical or machine learning algorithms
generally require aggregated data in summarized form.
Data mining algorithm require suitable input in the
form of cross tabular (horizontal) form, and hence
significant effort is required to compute aggregations
for this purpose. Such effort is due to the amount and
complexity of SQL code which needs to be written,
optimized and tested.

Data aggregation is a process in which information is
gathered and expressed in a summary form which is
used for purposes such as statistical analysis. A
common aggregation purpose is to get more
information about particular groups based on specific
variables such as age, name, phone number, address,
profession, or income. Most algorithms required input
as a data set with a horizontal layout, with several
records and one variable or dimension per column.
That technique is used with models like clustering,
classification, regression and PCA. Dimension used
in data mining technique are included in the point
dimension.

savim
Typewriter
https://doi.org/10.56343/STET.116.011.004.005
http://stetjournals.com

https://doi.org/10.56343/STET.116.011.004.005

www.stetjournals.com
 Scientific Transactions in Environment and Technovation

P - ISSN 0973 - 9157
E - ISSN 2393 - 9249

April to June 2018

J. Sci. Trans. Environ. Technov. 11(4), 2018 197

To perform analysis of exported tables into
spreadsheets it could be more convenient to have
aggregations on the same group in one row (e.g., to
produce graphs or to compare data sets with repetitive
information). OLAP tools generate SQL code to
transpose results (sometimes called PIVOT).
Transposition can be more efficient if there are
mechanisms combining aggregation and transposition
together. With such limitations in mind, we propose a
new class of aggregate functions that aggregate
numeric expressions and transpose results to produce
a data set with a horizontal layout. Functions
belonging to this class are called horizontal
aggregations. Horizontal aggregations represent an
extended form of traditional SQL aggregations, which
return a set of values in a horizontal layout (somewhat
similar to a multidimensional vector), instead of a
single value per row. This paper explains as to how
one could evaluate and optimize horizontal
aggregations generating standard SQL code.

Related Work

ATLaS

ATLaS adopts is a idea of specifying user defined
aggregates (UDAs) by an initialize, an iterate, and a
terminate computation from SOL-3 (Haixun et al.,2003).
The ATLaS system consists of the following
components (i) the database storage manager,(ii) the
language processor,(iii) the data stream management
engine are shown in Figure 1.

The database storage manager consists of (i) the
Berkeley DB library, and (ii) additional access methods
including in-memory database tables with hash-based
indexing, R+-tree for secondary storage, sequential text
files, etc. We used Berkeley DB to support access
methods such as the B+Tree, and Extended Linear
Hashing on disk-resident data. R+-trees are introduced
to supported spatio-temporal queries, and in-memory
tables are introduced to support the efficient
implementation of special data structures, such as trees
or priority queues, that are needed to support efficiently
specialized algorithms, such as Apriori or greedy
graph-optimization algorithms.

The ATLaS language processor translates ATLaS
programs into C++ code, which is then compiled and
linked with the database storage manager and user-
defined external functions. The core data structure
used in the language processor is the query graph.
The parser builds initial query graphs based on ATLaS’
abstract syntax tree. The rewriter, which makes
changes to the query graphs, is a very important
module, since much optimization, such as predicate
push-up/push-down, UDA optimization, index
selection and in-memory table optimization, was
carried out during this step. While ATLaS performs
sophisticated local query optimization, it does not
attempt to perform major changes in the overall
execution plan, which therefore remains under
programmer’s control. After rewriting, the code
generator translates the query graphs into C++ code.
The runtime model of ATLaS is based on data
pipelining. In particular, all UDAs are including
recursive UDAs that call themselves are pipelined;
thus, tuples inserted into the RETURN relation during
the INITIALIZE/ITERATE steps are returned to their
caller immediately. Therefore, local tables declared in
a UDA cannot reside on the stack. Instead, they are
assembled into a state structure which is then passed
to the UDA for each INITIALIZE/ITERATE/
TERMINATE call, so that these internal data are
retained between calls.

The data stream management engine is responsible
for efficiently maintaining records in windows and
the EXPIRED table. Records in a window are stored in
a disk file. Count-based windows have fixed sizes,
while time-based windows may require dynamic
allocation of disk buffers. A window specification with
a PARTITION clause may correspond to multiple
windows, one for each unique partition key. Records
of the windows are clustered by the partition key and
stored in a same disk file. ATLaS also supports data
sharing among multiple queries that access the same
external data stream concurrently. A single procedure
is responsible for reading the data from the external
stream and delivering them to the disk buffers of each
individual query. Furthermore, window specifications
of different queries can share disk buffers if the
specifications have the same filtering predicate and
PARTITION clause.

Integrating Association Rule Mining with Relational
Database Systems: Alternatives and Implications

The association rule mining problem can be
decomposed into two sub problems. All combinations
of items, called frequent item sets, whose support is
greater than minimum support. The frequent item sets
are used to generate the desired rules. The idea is that
if, say, ABCD and AB are frequent, then the rule ABàCDFig.1. The ATLaS Architecture

Association rules based secured . . .

www.stetjournals.com
 Scientific Transactions in Environment and Technovation

P - ISSN 0973 - 9157
E - ISSN 2393 - 9249

April to June 2018

J. Sci. Trans. Environ. Technov. 11(4), 2018198 V. Geetha and R. Ramya

holds if the ratio of support(ABCD) to support(AB) is
at least as large as the minimum confidence. Note that
the rule will have minimum support because ABCD is
frequent.

K-way joins

In each pass k, we join the candidate item sets Ck with
k transaction tables T and follow it up with a group by
on the item sets as shown in Figure 2. The Figure 2
also shows a tree diagram of the query. These tree
diagrams should not be confused with the plan trees
that could look quite different. This SQL computation,
when merged with the candidate generation step,
similar is proposed in (Galindo-Legaria et al.,1997) as
a possible mechanism to implement query flocks. For
pass-2 we used a special optimization where instead
of materializing C2, we replace it with the 2-way joins
between the F1s as shown in the candidate generation
phase. This saves the cost of materializing C2 and also
provides early filtering of the T s based on F1 instead
of the larger C2 which is almost a Cartesian product of
the F1s. In contrast, for other passes corresponding to
k >2;Ck could be smaller than Fk¡1 because of the prune
step.

Three-way joins

The above approach requires (k+1)-way joins in the
kth pass. We can reduce the cardinality of joins to 3
using the following approach which bears some
resemblance to the Apriori Tid algorithm. Each
candidate item set Ck , in addition to attributes
(item1,….., itemk) has three new attributes (oid, id1,id2).
oid is a unique identifier associated with each item set
and id1 and id2 are oids of the two item sets in Fk¡1
from which the item set in Ck was generated. In
addition, in the kth (for k >1) pass we generate a new
copy of the data table Tk with attributes (tid; oid) that
keeps for each tid the oid of each item set in Ck that it
supported. For support counting, we first generate Tk
from Tk¡1 and Ck and then do a group-by on Tk to find
Fk as follows:

Fig.2. K-way join

insert into Tk select t1.tid, oid

from Ck, Tk¡1 t1, Tk¡1t2

where t1.oid = Ck.id1 and t2.oid = Ck.id2 and t1.tid =
t2.tid

insert into Fk select oid, item1,….., itemk , cnt

from Ck ,

(select oid as cid, count(*) as cnt from Tk

group by oid having count(*)>:minsup) as temp

where Ck.oid = cid

Sub query-based

This approach makes use of common prefixes between
the item sets in Ck to reduce the amount of work done
during support counting. The support counting phase
is split into a cascade of k sub queries. The l-th sub
query Ql (see figure 3) finds all tids that match the
distinct item sets formed by the first l columns of Ck
(call it dl).

Fig. 3. Sub-queries

The output of Ql is joined with T and dlC1 (the distinct
item sets formed by the first l C1 columns of Ck) to get
QlC1. The final output is obtained by a group-by on
the k items to count support as above. Note that the
final “select distinct” operation on the Ck when l D k is
not necessary. For pass-2 the special optimization of
the KwayJoin approach is used.

 Two group-bys

This approach avoids the multi-way joins used in the
previous approaches, by joining T and Ck, based on
whether the “item” of a (tid, item) pair of T is equal to
any of the k items of Ck . Then, a group by on (item1,….,
itemk ; tid) filtering tuples with count equal to is dire k.
This gives all (item set, tid) pairs such that the tid
supports the item set. Finally, as in the previous
approaches, a group-by on the item set (item1,…., itemk
) filtering tuples that meet the support condition is
done. For pass-2, we apply the same optimization as
in the KwayJoin approach where we avoid
materializing C2.

www.stetjournals.com
 Scientific Transactions in Environment and Technovation

P - ISSN 0973 - 9157
E - ISSN 2393 - 9249

April to June 2018

J. Sci. Trans. Environ. Technov. 11(4), 2018 199

insert into Fk select item1,…., itemk ; count(*)

from (select item1,…., itemk ; count(*)

from T.Ck

where item = Ck.item1 or

Item= Ck.itemk

group by item1,…., itemk, tid

having count(*)= k) as temp

group by item1,….., itemk

having count(*) > :minsup

PIVOT and UNPIVOT: Optimization and Execution
Strategies in an RDBMS

Pivot and Unpivot are complementary data
manipulation operators that modify the role of rows
and columns in a relational table. Pivot transforms a
series of rows into a series of fewer rows with
additional columns. Data in one source column are
used to determine the new column for a row, and
another source column is used as the data for that new
column. Unpivot provides the inverse operation,
removing a number of columns and creating additional
rows that capture the column names and values from
the wide form.

SELECT Year(SELECT Sales FROM Sales Table AS T2
WHERE Month=’Jan’AND T2 Year=T1.Year)AS’Jan’
SELECT Year(SELECT Sales FROM Sales Table AS
T2WHERE Month=’Feb’ AND T2
Year=T1.Year)AS’Feb’ SELECT Year(SELECT Sales
FROM Sales Table AS T2WHERE Month=’Mar’ AND
T2 Year=T1.Year)AS’Mar’ FROM Sales Table AS T)
GROUP BY Year

Possible PIVOT Syntax

Unfortunately, this approach has limitations that
restrict the power of pivoting. Each column has
repetitive syntax, which is cumbersome as the number
of pivoted columns increases. These syntaxes are also
potentially harder to optimize. For this syntax, the
query optimizer is presented with a number of sub
queries, making it more difficult to determine that this
whole operation represents a “Pivot” on a single table.
In practice, this is not an easy operation, making pivot-
specific optimizations very difficult. The common
problem is that the intent of the query is difficult to
infer from the syntax or common relational algebra
representation.

Therefore, we used the following syntax for PIVOT in
Figure 5 as an additional option under the <table
expression> rule of the ANSI SQL grammar. This
syntax is easier to read and better captures the intent
of the desired operation. Repetition is eliminated,
making queries easier to write and maintain.

SELECT*FROM(SalesTablePIVOT(Sales for Month
IN(‘Jan’,Feb’,’Mar’));

PIVOT Syntax

PIVOT operates on a table, like other operations,
converting from narrow form to wide form. The column
‘Sales’ in Sales Table provides values for the pivoted
columns, while the values of the Month column define
the mapping describing in which column the value
from Sales belongs. The IN list describes the values of
interest from the Month column as well as the names
of the new columns to create in PIVOT. The remaining
columns from Sales Table, though not listed, implicitly
divide the rows of Sales Table into groups. Each group
of rows becomes a single output row as a result of
PIVOT.

SELECT*(Sales Report UNPIVOT (Sales for Month
IN (‘Jan’,Feb’,’Mar’);

UNPIVOT Syntax

For Unpivot, we propose similar syntax to undo the
pivoting operation. The UNPIVOT syntax that
contains the same major elements. The set of columns
to be removed are listed in the IN list, and the two new
columns to create are listed (Sales and Month in this
example). While PIVOT collapses similar rows into a

Fig.4. PIVOT and UNPIVOT

The express pivoting uses scalar sub queries in the
one method projection list is proposed in
(Cunningham et al.,2004). Each pivoted column is
created through a separate (but nearly identical) sub
query as seen in Fig 5. For database implementations
that do not support PIVOT, users could employ this
technique to perform pivoting operations. (Note that
Sales Table is defined graphically in Figure 4).

Association rules based secured . . .

www.stetjournals.com
 Scientific Transactions in Environment and Technovation

P - ISSN 0973 - 9157
E - ISSN 2393 - 9249

April to June 2018

J. Sci. Trans. Environ. Technov. 11(4), 2018200 V. Geetha and R. Ramya

single, wider row, UNPIVOT does the opposite. The
operation multiplies the number of rows by the number
of elements in the IN list while reducing the number of
columns.

Horizontal Percentage Aggregations

It is useful in situations where the user needs to get
results in horizontal form or wants to combine
percentages with aggregations based on the j grouping
columns. Vertical percentages can be combined with
other aggregate functions using the same grouping
columns D1,….,Dk. But what if it is necessary to
combine percentages with aggregates grouped by
D1,….,Dj? It is clear vertical percentages which are not
compatible with such aggregations. Another problem
is vertical percentages are hard to read when there are
many percentage rows. In general it may be easier to
understand percentages for the same group if they are
on the same row. For visualization purposes and
further analysis it may be more convenient to have all
percentages adding 100% in one row. Finally,
percentages may be the input for a data mining
algorithm, which in general requires the input data
set with one observation per row and all dimensions
(features) as columns. A primitive to transpose
(sometimes called de-normalize) tables may prove
useful for this purposes, but this feature is not generally
available in SQL. Having these issues in mind we
propose a new function that takes care of computing
percentages and transposing results to be on the same
row at the same time. We call this function a horizontal
percentage aggregate function. Computationally,
horizontal percentage queries have the same power as
vertical percentage queries but syntax, evaluation and
optimization are different.

The framework for horizontal percentages is similar
to the framework for vertical percentages. We
introduce the Hpct (A BY D j+1 ,….,Dk) aggregate
function, which must have at least one argument to
aggregate represented by A. The remaining represents
the list of grouping columns to compute individual
percentages. The totals are those given by the columns
D1,….,Dj in the GROUP BY clause if present. This
function returns a set of numbers for each group. All
the individual percentages adding 100% for each
group will appear on the same row in a horizontal
form. This allows computing percentages based on any
subset of columns not used in the GROUP BY clause.

SELECT D1,….,Dj ; Hpct(A BY Dj+1,….,Dk)

FROM F GROUP BY D1,….,Dj ;

This is a list of rules to use the Hpct() aggregate function
in (Haixun et al.,2003). The GROUP BY clause is
optional. The BY clause, inside the function call, is

required. The column list must be non-empty and must
be disjoint from D1,….,Dj . There is no limit number on
the columns in the list coming from F. If GROUP BY is
not present percentages are computed with respect to
the total sum of A for all rows in (Bhargava et
al.,1995).Other SELECT aggregate terms may use other
aggregate functions (e.g. sum(); avg(); count(); max())
based on the same GROUP BY clause based on
columns D1,….,Dj proposed in (Blakeley et al., 2008).
Grouping columns may be given in any order
proposed in (Clear et al., 1999). When Hpct() is used
more than once, in different terms, it can be used with
different grouping columns to compute individual
percentages. Columns used in each call must be
disjoint from the columns used in the GROUP BY
clause.

Proposed System

In this presented work , we proposed a new class of
aggregate functions that aggregate numeric
expressions and transpose results to produce a data
set with a horizontal layout. Functions belonging to
this class are called DPT. Dynamic Pivot tuple
represent an extended form of traditional SQL
aggregations, which return a set of values in a
horizontal layout (somewhat similar to a
multidimensional vector), instead of a single value per
row. This paper explains how to evaluate and optimize
horizontal aggregations generating standard SQL
code.

They represent a template to generate SQL code from a
data mining tool. Such SQL code automates writing
SQL queries, optimizing them and testing them for
correctness. This SQL code reduces manual work in
the data preparation phase in a data mining project.

SQL code is automatically generated. It is likely to be
more efficient than SQL code written by an end user.
For instance, a person who does not know SQL well or
someone who is not familiar with the database schema
(e.g., a data mining practitioner). Data sets can be
created in less time.

The data set can be created entirely inside the DBMS.
In modern database environments, it is common to
export demoralized data sets to be further cleaned and
transformed outside a DBMS in external tools (e.g.,
statistical packages). Unfortunately, exporting large
tables outside a DBMS is slow, creates inconsistent
copies of the same data and compromises database
security.

Therefore, we provide a more efficient, better integrated
and more secure solution compared to external data
mining tools. Horizontal aggregations just require a
small syntax extension to aggregate functions called

www.stetjournals.com
 Scientific Transactions in Environment and Technovation

P - ISSN 0973 - 9157
E - ISSN 2393 - 9249

April to June 2018

J. Sci. Trans. Environ. Technov. 11(4), 2018 201

in a SELECT statement. Alternatively, horizontal
aggregations can be used to generate SQL code from a
data mining tool to build data sets for data mining
analysis.

Fig.5. System Architecture

Client request preprocessing

In this Phase, we compute the vertical aggregation for
the selected distinct columns. Choose a cluster of
servers select the group by column, select the aggregate
column, select the transposing column and compute
the vertical aggregation for selected columns.

SPJ Method

In this module, we aggregate the column horizontally
using SPJ (Select, Project, Join) Method. (Gray et al.,
1996) The basic idea is to create one table with a vertical
aggregation for each result column and then join all
those tables to produce FH. We aggregate from F into d
projected tables with d Select-Project-Join-Aggregation
queries (selection, projection, join, aggregation). Each
table FI corresponds to one sub grouping combination
and has {L1,…., Lj} as primary key and an aggregation
on A as the only non key column. It is necessary to
introduce an additional table F0 that will be outer
joined with projected tables to get a complete result
set. We propose two basic sub strategies to compute
FH. The first one directly aggregates from F. The second
one computes the equivalent vertical aggregation in a
temporary table FV grouping by L1,……..,Lj,
R1,………,Rk.

Case Method

In this module, we aggregate the column horizontally
case Method. The case statement returns a value
selected from a set of values based on boolean

expressions. From a relational database theory point
of view this is equivalent to doing a simple projection/
aggregation query where each nonkey value is given
by a function that returns a number based on some
conjunction of conditions. We propose two basic sub
strategies to compute FH. In a similar manner to SPJ,
the first one directly aggregates from F and the second
one computes the vertical aggregation in a temporary
table FV and then horizontal aggregations are
indirectly computed from FV.

Horizontal aggregation queries can be evaluated by
directly aggregating from F and transposing rows at
the same time to produce FH. First, we need to get the
unique combinations of R1,….,Rk that define the
matching Boolean expression for result columns. The
SQL code to compute horizontal aggregations directly
from F is as follows: observe V ðÞ is a standard (vertical)
SQL aggregation that has a “case” statement as
argument. Horizontal aggregations need to set the
result to null when there are no qualifying rows for
the specific horizontal group to be consistent with the
SPJ method and also with the extended relational
model.

Secured Association Rule using DPT

In this module, we aggregate the column horizontally
pivot Method (Han et al.,2001). We consider the PIVOT
operator which is a built-in operator in a commercial
DBMS proposed in (Codd,1979). Since this operator
can perform transposition it can help evaluating
horizontal aggregations. The PIVOT method internally
needs to determine how many columns are needed to
store the transposed table and it can be combined with
the GROUP BY clause.

Example

Consider the Table F. Our main aim is to convert the F
into horizontal layout.

SPJ Method

Query1

INSERT INTO F1

SELECT D1,sum(A) AS A

FROM F

WHERE D2=’X’

 Tra
nsac

Sele
ct

Co
mpu

Co
mpu

SPJ
Met

Cas
e

Pivo
t

Association rules based secured . . .

www.stetjournals.com
 Scientific Transactions in Environment and Technovation

P - ISSN 0973 - 9157
E - ISSN 2393 - 9249

April to June 2018

J. Sci. Trans. Environ. Technov. 11(4), 2018202

GROUP BY D1;

Query2

INSERT INTO F2

SELECT D1,sum(A) AS A

FROM F

WHERE D2=’Y’

GROUP BY D1;

Query3

INSERT INTO FH

SELECT F0.D1,F1.A AS D2_X,F2.A AS D2_Y

FROM F0 LEFT OUTER JOIN F1 on F0.D1=F1.D1

LEFT OUTER JOIN F2 on F0.D1=F2.D1;

Case Method

INSERT INTO FH

SELECT

D1

,SUM(CASE WHEN D2=’X’ THEN A

ELSE null END) as D2_X

,SUM(CASE WHEN D2=’Y’ THEN A

ELSE null END) as D2_Y

FROM F

GROUP BY D1;

Pivot Method

INSERT INTO FH

SELECT

D1,[X] as D2_X ,[Y] as D2_Y

FROM (

SELECT D1, D2, A FROM F

) as p

PIVOT (

SUM(A) FOR D2 IN ([X], [Y])) as pvt;

Vertical Aggregation

Horizontal Aggregation

Migration of table definitions across databases from
different vendors

Works with databases, such as MySQL, Postgre SQL,
Oracle, IBM DB2, Microsoft SQL Server, PointBase,
Sybase, Informix, Cloudscape, Derby, and the more
NetBeans IDE also provides full-featured refactoring
tools, which allow you to rename and move classes,
fields and methods, as well as change method
parameters. In addition, you get a debugger and an
Anti-based project system.

1.Algorithm

 Initialize the keyword K; (1)

Find data set using K; (2)

If k= yes (3)

K’ cluster data; (4)

K’ find join column vector; (5)

If column vector = yes (6)

Case c = get bool value; (7)

C = find pt; (8)

Pt= convert with c; (9)

RESULT AND DISCRIPTION

The translation table shows the data for the sales of
the organization in a week. It also show the translation
of the day by day sales process.

Fig. 6. Show the details of the company sales structure
in Week days

CONCLUSION

V. Geetha and R. Ramya

www.stetjournals.com
 Scientific Transactions in Environment and Technovation

P - ISSN 0973 - 9157
E - ISSN 2393 - 9249

April to June 2018

J. Sci. Trans. Environ. Technov. 11(4), 2018 203

We introduced a new class of extended aggregate
functions, called horizontal aggregations which help
preparing data sets for data mining and OLAP cube
exploration. Specifically, horizontal aggregations are
useful to create data sets with a horizontal layout, as
commonly required by data mining algorithms and
OLAP cross-tabulation. Basically, a horizontal
aggregation returns a set of numbers instead of a single
number for each group, resembling a multidimensional
vector. We proposed an abstract, but minimal,
extension to SQL standard aggregate functions to
compute horizontal aggregations which just requires
specifying sub grouping columns inside the
aggregation function call. From a query optimization
perspective, we proposed three query evaluation
methods. The first one (SPJ) relies on standard
relational operators. The second one (CASE) relies on
the SQL CASE construct. The third (PIVOT) uses a
built-in operator in a commercial DBMS that is not
widely available. The SPJ method is important from a
theoretical point of view because it is based on select,
project, and join (SPJ) queries. The CASE method is
our most important contribution proposed in (Garcia-
Molina et al., 2001). It is in general the most efficient
evaluation method and it has wide applicability since
it can be programmed combining GROUP-BY and
CASE statements.

We proved the three methods which produced the
same result. We have explained that it is not possible
to evaluate horizontal aggregations using standard
SQL without either joins or “case” constructs using
standard SQL operators. Our proposed horizontal
aggregations can be used as a database method to
automatically generate efficient SQL queries with three
sets of parameters: grouping columns, sub grouping
columns and aggregated column. The fact that the
output horizontal columns are not available when the
query is parsed (when the query plan is explored and
chosen) makes its evaluation through standard SQL
mechanisms infeasible. Our experiments with large
tables show our proposed horizontal aggregations
evaluated with the CASE method have similar
performance to the built-in PIVOT operator. We believe
this is remarkable since our proposal is based on
generating SQL code and not on internally modifying
the query optimizer. Both CASE and PIVOT evaluation
methods are significantly faster than the SPJ method.
Pre-computing a cube on selected dimensions
produced an acceleration on all methods proposed in
(Graefe et al.,1998). There are several research issues.
Efficiently evaluating horizontal aggregations using
left outer joins presents opportunities for query
optimization. Secondary indexes on common grouping
columns, besides indexes on primary keys, can
accelerate computation. We have shown our proposed

horizontal aggregations do not introduce conflicts with
vertical aggregations, but we need to develop a more
formal model of evaluation. In particular, we wanted
to study the possibility of extending SQL OLAP
aggregations with horizontal layout capabilities.
Horizontal aggregations produce tables with fewer
rows, but with more columns. Thus query optimization
techniques used for standard (vertical) aggregations
are inappropriate for horizontal aggregations. We plan
to develop more complete I/O cost models for cost
based query optimization. We wanted to study
optimization of horizontal aggregations processed in
parallel with in shared nothing DBMS architecture.
Cube properties can be generalized to multi valued
aggregation results produced by a horizontal
aggregation. We need to understand if horizontal
aggregations can be applied to holistic functions (e.g.,
rank()). Optimizing a workload of horizontal
aggregation queries is another challenging problem.

Future Work

This proposed new method of dynamic pivot point
has used to translate from vertical to horizontal to serve
the data very quickly and fluently. In future we have
to use the horizontal alignment is very fast
methodology and using the simplest algorithm because
DPT is the complex algorithm to find the data and
conversion is slightly take the time to load the data
from the different servers.

REFERENCE

Association rules based secured . . .

Bhargava, G., Goel, P. and Iyer, B.R. 1995. Hypergraph
Based Reorderings of Outer Join Queries with
Complex Predicates. In : Proc. ACM SIGMOD Int’l
Conf. Management of Data (SIGMOD’95) P. 304-315.

Blakeley, J.A., Rao, V., Kunen, I., Prout, A., Henaire, M.
and Kleinerman, C. 2008. NET Database
Programmability and Extensibility in Microsoft
SQL Server, In : Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’08), P.1087-1098.

Clear, J., Dunn, D., Harvey, B., Heytens, M.L. and
Lohman, P. 1999. Non-Stop SQL/MX Primitives
for Knowledge Discovery. In : Proc. ACM
SIGKDD Fifth Int’l Conf. Knowledge Discovery and
Data Mining (KDD ’99), P.425-429.

Codd, E.F. 1979. Extending the Database Relational Model
to Capture More Meaning. In : Proc. ACM
Trans.Database Systems, 4 : 397-434.

Cunningham, C., Graefe, G. and Galindo-Legaria, C.A.
2003. PIVOT and UNPIVOT: Optimization and
Execution Strategies in an RDBMS. In : Proc.13th
Int’l Conf. Very Large Data Bases (VLDB ’04),
P.998-1009.

Galindo-Legaria, C. and Rosenthal, D. 1997. Outer Join
Simplification and Reordering for Query

HERO
Typewriter
https://doi.org/10.1145/568271.223847

https://doi.org/10.1145/568271.223847
HERO
Typewriter
https://doi.org/10.1145/1376616.1376725

https://doi.org/10.1145/1376616.1376725
HERO
Typewriter
https://doi.org/10.1145/312129.312309

https://doi.org/10.1145/312129.312309
HERO
Typewriter
https://doi.org/10.1145/320107.320109

https://doi.org/10.1145/320107.320109
HERO
Typewriter
https://doi.org/10.1016/B978-012088469-8.50087-5

https://doi.org/10.1016/B978-012088469-8.50087-5

www.stetjournals.com
 Scientific Transactions in Environment and Technovation

P - ISSN 0973 - 9157
E - ISSN 2393 - 9249

April to June 2018

J. Sci. Trans. Environ. Technov. 11(4), 2018204 V. Geetha and R. Ramya

Optimization. In : Proc ACM Trans. Database
Systems, 22 : 43-73.

Garcia-Molina, H., Ullman, J.D. and Widom, J.2001.
Database Systems: The Complete Book, first ed.
Prentice Hall.

Graefe, G., Fayyad, U. and Chaudhuri, S.1998. On the
Efficient Gathering of Sufficient Statistics for
Classification from Large SQL Databases. In :
Proc. ACM Conf. Knowledge Discovery and Data
Mining (KDD ’98), P.204-208.

Gray, J., Bosworth, A., Layman, A. and Pirahesh, H. 1996.
Data Cube: A Relational Aggregation Operator

Generalizing Group-by, Cross- Tab and Sub-
Total. In : Proc. Int’l Conf. Data Eng., P. 152-159.

Han, J. and Kamber, M. Dec, 2001. Data Mining: Concepts
and Techniques, first ed. Morgan Kaufmann. In
Proc International Journal of Intelligent Systems, v.27,
P.317-342 .

Haixun Wang, H., Carlo Zaniolo, C. and Chang Richard
Luo, D. 2003. ATLaS: A Small but complete SQL
Extension for Data Mining and Data Streams, 29:
1113-1116.

HERO
Typewriter
https://doi.org/10.1145/244810.244812

https://doi.org/10.1145/244810.244812
HERO
Typewriter
https://doi.org/10.1016/B978-012722442-8/50118-X

https://doi.org/10.1016/B978-012722442-8/50118-X

